Levi-Civita connections in noncommutative geometry

Jyotishman Bhowmick (joint work with D. Goswami, S. Joardar and S. Mukhopadhyay)

Indian Statistical Institute

30.11.2018

Jyotishman Bhowmick (Indian Statistical InstituteLevi-Civita connections in noncommutative geome

Levi-Civita's theorem

Suppose (M, g) is a pseudo-Riemannian manifold. Then there exists a unique connection

$$abla : \Omega^1(M) \to \Omega^1(M) \otimes_{C^\infty(M)} \Omega^1(M)$$

such that ∇ is torsionless and compatible with *g*.

Levi-Civita's theorem

Suppose (M, g) is a pseudo-Riemannian manifold. Then there exists a unique connection

$$abla : \Omega^1(M) \to \Omega^1(M) \otimes_{C^\infty(M)} \Omega^1(M)$$

such that ∇ is torsionless and compatible with *g*.

Question

Suppose \mathcal{A} be a unital (possibly noncommutative) algebra and $(\Omega^{\cdot}(\mathcal{A}), d)$ be a differential calculus on \mathcal{A} and g a pseudo-Riemannian metric on $\Omega^{1}(\mathcal{A})$.

Levi-Civita's theorem

Suppose (M, g) is a pseudo-Riemannian manifold. Then there exists a unique connection

$$abla : \Omega^1(M) \to \Omega^1(M) \otimes_{C^\infty(M)} \Omega^1(M)$$

such that ∇ is torsionless and compatible with *g*.

Question

Suppose \mathcal{A} be a unital (possibly noncommutative) algebra and $(\Omega^{\cdot}(\mathcal{A}), d)$ be a differential calculus on \mathcal{A} and g a pseudo-Riemannian metric on $\Omega^{1}(\mathcal{A})$. Does there exist a connection

$$\nabla: \Omega^1(\mathcal{A}) \to \Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$$

such that ∇ is torsionless and compatible with *g*.

- Frolich, Grandjean and Recknagel (Hermitian metric on spectral triples)
- Connes, Tretkoff, Moscovici, Khalkhali, Fatizadeh, Dabrowski, Sitarz, Yang Liu, Mathias Lesch etc (curvature for conformal perturbation from spectral asymptotics of the Laplacian of the noncommutative torus)
- Beggs, Majid and collaborators (bimodule connections, or zero co-torsion replacing metric compatibility)

Aim

Identify a set of sufficient conditions on the differential calculus which ensures the existence (and uniqueness) of the Levi-Civita connection.

Aim

Identify a set of sufficient conditions on the differential calculus which ensures the existence (and uniqueness) of the Levi-Civita connection.

Theorem (Goswami)

Suppose $(\Omega^{\cdot}(\mathcal{A}), d)$ is a differential calculus such that $\mathcal{E} := \Omega^{1}(\mathcal{A})$ satisfies **Assumption I - III**. Moreover assume that there exists a nondegenerate pseudo-Riemannian bilinear metric g_0 on \mathcal{E} . Then there exists a unique connection on \mathcal{E} which is torsionless and compatible with g.

Denote $\Omega^1(\mathcal{A})$ by the symbol \mathcal{E} .

Pseudo-Riemannian metric on one forms

Denote $\Omega^1(\mathcal{A})$ by the symbol \mathcal{E} .

Definition

Suppose
$$\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} = \operatorname{Ker}(m) \oplus \mathcal{F}$$

as $\mathcal{A} - \mathcal{A}$ -bimodules, where $\mathcal{F} \cong \text{Im}(m)$.

Pseudo-Riemannian metric on one forms

Denote $\Omega^1(\mathcal{A})$ by the symbol \mathcal{E} .

Definition

Suppose
$$\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} = \operatorname{Ker}(m) \oplus \mathcal{F}$$

as $\mathcal{A} - \mathcal{A}$ -bimodules, where $\mathcal{F} \cong \text{Im}(m)$. Let us set up the following notations:

2 P_{sym} = unique idempotent on $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ with range $\mathcal{E} \otimes_{\mathcal{A}}^{\text{sym}} \mathcal{E}$ and kernel \mathcal{F} .

 $\ \, \mathbf{\sigma} = 2P_{\rm sym} - 1.$

Denote $\Omega^1(\mathcal{A})$ by the symbol \mathcal{E} .

Definition

Suppose
$$\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} = \operatorname{Ker}(m) \oplus \mathcal{F}$$

as $\mathcal{A} - \mathcal{A}$ -bimodules, where $\mathcal{F} \cong \text{Im}(m)$. Let us set up the following notations:

2 $P_{\text{sym}} = \text{unique idempotent on } \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \text{ with range } \mathcal{E} \otimes_{\mathcal{A}}^{\text{sym}} \mathcal{E} \text{ and kernel } \mathcal{F}.$

$$= 2P_{\rm sym} - 1.$$

A pseudo-Riemannian metric g on \mathcal{E} is an element of $\operatorname{Hom}_{\mathcal{A}}(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}, \mathcal{A})$ such that

(i) g is symmetric, i.e. $g\sigma = g$,

Denote $\Omega^1(\mathcal{A})$ by the symbol \mathcal{E} .

Definition

Suppose
$$\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} = \operatorname{Ker}(m) \oplus \mathcal{F}$$

as $\mathcal{A} - \mathcal{A}$ -bimodules, where $\mathcal{F} \cong \text{Im}(m)$. Let us set up the following notations:

2 $P_{\text{sym}} = \text{unique idempotent on } \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \text{ with range } \mathcal{E} \otimes_{\mathcal{A}}^{\text{sym}} \mathcal{E} \text{ and kernel } \mathcal{F}.$

$$= 2P_{\rm sym} - 1.$$

A pseudo-Riemannian metric g on \mathcal{E} is an element of $\operatorname{Hom}_{\mathcal{A}}(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}, \mathcal{A})$ such that

(i) g is symmetric, i.e. $g\sigma = g$,

(ii) g is non-degenerate, i.e, the right A-linear map $V_g : \mathcal{E} \to \mathcal{E}^*$ defined by $V_g(\omega)(\eta) = g(\omega \otimes_{\mathcal{A}} \eta)$

is an isomorphism of right A-modules.

Connection on \mathcal{E}

A $\mathbb{C}\text{-linear}$ map $\nabla:\mathcal{E}\to\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}$ such that

$$\nabla(ea) = \nabla(e)a + e \otimes_{\mathcal{A}} da.$$

Connection on \mathcal{E}

A $\mathbb{C}\text{-linear}$ map $\nabla:\mathcal{E}\to\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}$ such that

$$\nabla(ea) = \nabla(e)a + e \otimes_{\mathcal{A}} da.$$

Torsion of ∇

$$T_{\nabla} := m \circ \nabla + d : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^2(\mathcal{A}).$$

 T_{∇} is right \mathcal{A} -linear. ∇ is called torsionless if $T_{\nabla} = 0$.

Image: A image: A

Need to make some assumptions (**Assumption I, II, III**) for defining the metric compatibility of a connection.

Metric compatibility of a connection

Need to make some assumptions (**Assumption I, II, III**) for defining the metric compatibility of a connection. Recall that $\mathcal{Z}(\mathcal{E}) = \{e \in \mathcal{E} : ea = ae \ \forall a \in \mathcal{E}\}.$

Assumption I

 ${\mathcal E}$ is finitely generated and projective as a right ${\mathcal A}$ -module. Moreover, the map

$$u^{\mathcal{E}}: \mathcal{Z}(\mathcal{E}) \otimes_{\mathcal{Z}(\mathcal{A})} \mathcal{A} \to \mathcal{E}$$

$$\sum_i e'_i \otimes_{\mathcal{Z}(\mathcal{A})} a_i \mapsto \sum_i e'_i a_i$$

is an isomorphism of vector spaces.

Classical case:
$$\mathcal{E} = \Omega^1(M)$$

$$\mathcal{Z}(\mathcal{A}) = \mathcal{A}, \mathcal{Z}(\mathcal{E}) = \mathcal{E}.$$

Jyotishman Bhowmick (Indian Statistical InstituteLevi-Civita connections in noncommutative geome

• • • • • • • • • • • • •

 $m: \Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A}) \to \Omega^2(\mathcal{A})$

$$m: \Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A}) \to \Omega^2(\mathcal{A})$$

Assumption II:

The $\mathcal{A} - \mathcal{A}$ bimodule $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ admits a splitting as a direct sum of right \mathcal{A} modules : Ker $(m) \oplus \mathcal{F}$, where $\mathcal{F} \cong \text{Im}(m)$.

Assumption III:

If ω, η are in $\mathcal{Z}(\mathcal{E})$, then $\sigma(\omega \otimes_{\mathcal{A}} \eta) = \eta \otimes_{\mathcal{A}} \omega$.

Assumption III:

If ω, η are in $\mathcal{Z}(\mathcal{E})$, then $\sigma(\omega \otimes_{\mathcal{A}} \eta) = \eta \otimes_{\mathcal{A}} \omega$.

Consequences of Assumption I - III

 \mathcal{E} is a centered bimodule.

Fix a pseudo Riemannian metric g on \mathcal{E} .

Fix a pseudo Riemannian metric g on \mathcal{E} .

Lemma

For a pseudo-Riemannian metric on \mathcal{E} , let us define $\Pi^0_g(\nabla) : \mathcal{Z}(\mathcal{E}) \otimes_{\mathbb{C}} \mathcal{Z}(\mathcal{E}) \to \mathcal{E}$ as the map given by

$$\Pi^0_g(\nabla)(\omega \otimes_{\mathbb{C}} \eta) = (g \otimes_{\mathcal{A}} \mathrm{id})\sigma_{23}(\nabla(\omega) \otimes_{\mathcal{A}} \eta + \nabla(\eta) \otimes_{\mathcal{A}} \omega).$$

Then Π_g^0 extends to a well defined map from $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ to \mathcal{E} to be denoted by $\Pi_g(\nabla)$.

Fix a pseudo Riemannian metric g on \mathcal{E} .

Lemma

For a pseudo-Riemannian metric on \mathcal{E} , let us define $\Pi^0_g(\nabla) : \mathcal{Z}(\mathcal{E}) \otimes_{\mathbb{C}} \mathcal{Z}(\mathcal{E}) \to \mathcal{E}$ as the map given by

$$\Pi^0_g(\nabla)(\omega \otimes_{\mathbb{C}} \eta) = (g \otimes_{\mathcal{A}} \mathrm{id})\sigma_{23}(\nabla(\omega) \otimes_{\mathcal{A}} \eta + \nabla(\eta) \otimes_{\mathcal{A}} \omega).$$

Then Π_g^0 extends to a well defined map from $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ to \mathcal{E} to be denoted by $\Pi_g(\nabla)$.

The definition

A connection ∇ on \mathcal{E} is said to be compatible with g if $\Pi_g(\nabla) = dg$.

Main theorem

Suppose $(\Omega^{\cdot}(\mathcal{A}), d)$ is a differential calculus such that $\mathcal{E} := \Omega^{1}(\mathcal{A})$ satisfies

Assumption I

 \mathcal{E} fgp as a right \mathcal{A} -module. $u^{\mathcal{E}} : \mathcal{Z}(\mathcal{E}) \otimes_{\mathcal{Z}(\mathcal{A})} \mathcal{A} \to \mathcal{E}, \sum_{i} e'_{i} \otimes_{\mathcal{Z}(\mathcal{A})} a_{i} \mapsto \sum_{i} e'_{i} a_{i}$ is an isomorphism of vector spaces.

Assumption II:

 $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} = \operatorname{Ker}(m) \oplus \mathcal{F}$, where $\mathcal{F} \cong \operatorname{Im}(m)$.

Assumption III:

If ω, η are in $\mathcal{Z}(\mathcal{E})$, then $\sigma(\omega \otimes_{\mathcal{A}} \eta) = \eta \otimes_{\mathcal{A}} \omega$.

Moreover assume that there exists a nondegenerate pseudo-Riemannian bilinear metric g_0 on \mathcal{E} . Then there exists a unique connection on \mathcal{E} which is torsionless and compatible with g.

Theorem (Goswami)

Let $\Phi_g : \operatorname{Hom}_{\mathcal{A}}(\mathcal{E}, \mathcal{E} \otimes^{\operatorname{sym}}_{\mathcal{A}} \mathcal{E}) \to \operatorname{Hom}_{\mathcal{A}}(\mathcal{E} \otimes^{\operatorname{sym}}_{\mathcal{A}} \mathcal{E}, \mathcal{E})$ be defined by :

$$\Phi_g(L) = (g \otimes_{\mathcal{A}} \mathrm{id})\sigma_{23}(L \otimes_{\mathcal{A}} \mathrm{id})(1+\sigma)|_{\mathcal{E} \otimes_{\mathcal{A}}^{\mathrm{sym}} \mathcal{E}}.$$

Then Φ_g is right \mathcal{A} -linear.

Theorem (Goswami)

Let $\Phi_g : \operatorname{Hom}_{\mathcal{A}}(\mathcal{E}, \mathcal{E} \otimes^{\operatorname{sym}}_{\mathcal{A}} \mathcal{E}) \to \operatorname{Hom}_{\mathcal{A}}(\mathcal{E} \otimes^{\operatorname{sym}}_{\mathcal{A}} \mathcal{E}, \mathcal{E})$ be defined by :

$$\Phi_g(L) = (g \otimes_{\mathcal{A}} \mathrm{id})\sigma_{23}(L \otimes_{\mathcal{A}} \mathrm{id})(1+\sigma)|_{\mathcal{E} \otimes_{\mathcal{A}}^{\mathrm{sym}} \mathcal{E}}.$$

Then Φ_g is right \mathcal{A} -linear.

Moreover, if Φ_g is an isomorphism of right \mathcal{A} -modules,

then there exists a unique connection ∇ on \mathcal{E} which is torsion-less and compatible with g.

Moreover, ∇ is given by the following equation:

$$\nabla = \nabla_0 + \Phi_g^{-1} (dg - \Pi_g(\nabla_0)). \tag{1}$$

A spectral triple over a unital *-algebra $A^{\infty} \subseteq B(H)$, (*H* is a Hilbert space) is a triple (A^{∞}, H, D) such that *D* is a self adjoint (possibly unbounded) operator on *H*, For all $a \in A^{\infty}$, [D, a] extends to a bounded operator on *H*, *D* has compact resolvents.

The space of forms from a spectral triple

Define $d_D(\cdot) = \sqrt{-1}[D, \cdot]$. $\Omega^1(\mathcal{A}) := \operatorname{Span}\{a[D, b] : a, b \in \mathcal{A}\}.$ Have a natural multiplication map $m_0 : \Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A}) \to \mathcal{B}(H); (\omega \otimes_{\mathcal{A}} \eta) \mapsto \omega \eta \in \mathcal{B}(\mathcal{H}).$ Let $\mathcal{J} = \operatorname{right} \mathcal{A}$ -submodule of the $\operatorname{Im}(m_0)$ spanned by elements of the form $\sum_i [D, a_i][D, b_i]$ (finite sum) such that $\sum_i a_i[D, b_i] = 0$ $(a_i, b_i \in \mathcal{A}).$ We define $\Omega^2(\mathcal{A}) = \operatorname{Im}(m_0)/\mathcal{J}$ and let $m : \Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A}) \to \Omega^2(\mathcal{A})$ be the composition of m_0 and the quotient map from $\operatorname{Im}(m_0)$ to $\Omega^2(\mathcal{A}).$

Suppose $(\mathcal{A}, \mathcal{H}, D)$ is a *p*-summable spectral triple. Consider the positive linear functional τ on $\mathcal{B}(\mathcal{H})$ given by

$$\tau(X) = \operatorname{Lim}_{\omega} \frac{\operatorname{Tr}(X |D|^{-p})}{\operatorname{Tr}(|D|^{-p})},$$

 $\operatorname{Lim}_{\omega}$ being the Dixmier trace. We will assume that τ is a faithful normal trace on the von Neumann algebra generated by the *-subalgebra generated by \mathcal{A} and $[D, \mathcal{A}]$ in $\mathcal{B}(\mathcal{H})$.

Suppose $(\mathcal{A}, \mathcal{H}, D)$ is a *p*-summable spectral triple. Consider the positive linear functional τ on $\mathcal{B}(\mathcal{H})$ given by

$$\tau(X) = \operatorname{Lim}_{\omega} \frac{\operatorname{Tr}(X |D|^{-p})}{\operatorname{Tr}(|D|^{-p})},$$

 $\operatorname{Lim}_{\omega}$ being the Dixmier trace. We will assume that τ is a faithful normal trace on the von Neumann algebra generated by the *-subalgebra generated by \mathcal{A} and $[D, \mathcal{A}]$ in $\mathcal{B}(\mathcal{H})$.

The \mathcal{A}'' -valued bilinear form (after Frolich et al)

Let $g: \mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \to \mathcal{A}''$ be given by

$$g(\omega \otimes_{\mathbb{C}} \eta) = \langle \langle \omega^*, \eta \rangle \rangle.$$

Then g descends to an A-bilinear, A''-valued map, to be denoted by g again.

Proposition (Goswami)

Suppose that the map

$$\mathbb{R} o \mathcal{B}(\mathcal{H})$$
 defined by $t \mapsto e^{itD}Xe^{-itD}$

is differentiable at t = 0 in the norm topology of $\mathcal{B}(\mathcal{H})$, so that the map $\mathcal{L} := -d^*d$ makes sense. If $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{A}$, then

$$g(\omega \otimes_{\mathcal{A}} \eta) \in \mathcal{A} \text{ for all } \omega, \eta \in \Omega^1(\mathcal{A}).$$

Definition

Let $(\mathcal{A}, \mathcal{H}, D)$ be a spectral triple so that **Assumption I** - III are satisfied. If the \mathcal{A} - \mathcal{A} bilinear map g above is \mathcal{A} -valued, $V_g : \mathcal{E} \to \mathcal{E}^*$ is nondegenerate and $g \circ \sigma = g$, then we call g to be the canonical Riemannian bilinear metric for the spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

- The matrix geometry of the Fuzzy sphere
- The quantum Heisenberg manifold
- Isospectral deformations of classical manifolds by free and isometric toral action.

Spectral triple for the Fuzzy sphere (Frolich et al)

G = SU(2) and $V_j, j \in \frac{1}{2}\mathbb{N}_0$, denote the (2j + 1) dimensional irreducible representation of SU(2). $\mathcal{H}_0 := \bigoplus_{j=0,\frac{1}{2},...,\frac{k}{2}} V_j^* \otimes_{\mathbb{C}} V_j$ $\mathcal{A} := \mathcal{B}(\mathcal{H}_0)$. Let $\mathcal{H} := \mathcal{H}_0 \otimes W$. W = the canonical irreducible representation space of the Clifford algebra generated by the vector space $T_e G$ with respect to the Killing form on G.

There exists a spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

The space of forms

- $\mathcal{E} \cong \text{Span}\{a_i \otimes_{\mathbb{C}} e_i : i = 1, 2, 3\}$ and thus is a free right \mathcal{A} module of rank three.
- The bimodule structure for $\mathcal{E} := \Omega^1(\mathcal{A})$ is given by $a(b \otimes_{\mathbb{C}} e_i)c = abc \otimes_{\mathbb{C}} e_i.$
- Ω²(\mathcal{A}) \cong Span{ $a_{ij} \otimes_{\mathbb{C}} e_i e_j : a_{ij} = -a_{ji}$ } is a free right \mathcal{A} module of rank three.
- Ker(m) is generated (as a right \mathcal{A} module) by the set $\{e_i \otimes_{\mathcal{A}} e_i, e_i \otimes_{\mathcal{A}} e_j + e_j \otimes_{\mathcal{A}} e_i : i = 1, 2, 3\}.$
- The space of three-forms is a free rank one module and all the higher forms are zero.

Theorem (Frolich et al)

Frolich et al proves (with their definition of metric compatibility) that there exists a family of torsionless and metric compatible connections.

Theorem (Frolich et al)

Frolich et al proves (with their definition of metric compatibility) that there exists a family of torsionless and metric compatible connections. However, there exists a unique real unitary and torsion-less connection for for \mathcal{E} .

Theorem (Frolich et al)

Frolich et al proves (with their definition of metric compatibility) that there exists a family of torsionless and metric compatible connections. However, there exists a unique real unitary and torsion-less connection for for \mathcal{E} .

Proposition (B. + Goswami + Mukhopadhyay)

With our definition of metric compatibility of a connection, there exists a unique Levi-Civita connection and this connection coincides with the real unitary and torsion-less connection of Frolich et al.

The Heisenberg manifold and its quantization

Suppose *G* is the Heisenberg group and \mathbb{Z} the corresponding discrete subgroup. The classical Heisenberg manifold is the homogeneous space G/\mathbb{Z} . Rieffel constructed a 2-parameter strict deformation quantization of $C(G/\mathbb{Z})$.

Proposition (Chakraborty and Sinha)

There exists a family of spectral triples on the quantum Heisenberg manifold. The module of one forms $\mathcal{E} := \Omega^1(\mathcal{A})$ is a free module generated by three central elements. The space of two forms $\Omega^2(\mathcal{A}) = \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$. If we take the metric compatibility condition of Frolich et al, then there exists no torsionless connection which is compatible with the metric.

Proposition(B. + Goswami + Joardar)

Levi-Civita connection exists. Moreover, this connection has a constant negative scalar curvature Scal = -0.125.

The spectral triple

Let e_1, e_2, e_3 be Pauli's spin matrices. $\mathcal{A} =$ the algebra of smooth functions on the quantum Heisenberg manifold. The algebra \mathcal{A} admits an action of the Heisenberg group. τ will denote a certain state on \mathcal{A} invariant under the action of the Heisenberg group. Let X_1, X_2, X_3 denote the canonical basis of the Lie algebra of the Heisenberg group so that we have associated self-adjoint operators d_{X_i} on $L^2(\mathcal{A}, \tau) \otimes_{\mathbb{C}} \mathbb{C}^3$ in the natural way. Then the triple $(\mathcal{A}, L^2(\mathcal{A}, \tau) \otimes_{\mathbb{C}} \mathbb{C}^2, D)$ defines a spectral triple on \mathcal{A} where \mathcal{A} is represented on $L^2(\mathcal{A}, \tau) \otimes_{\mathbb{C}} \mathbb{C}^2$ diagonally and the Dirac operator D is defined as $D = \sum_j d_{X_j} \otimes_{\mathbb{C}} \gamma_j$, where $\{\gamma_j : j = 1, 2, 3\}$ are self-adjoint 3×3 matrices satisfying $\gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij}$.

Theorem (B. + Goswami + Mukhopadhyay)

- Suppose *M* is a compact Riemannian manifold equipped with a free and isometric action of \mathbb{T}^n .
- Let \mathcal{A}_{θ} denote the Connes-Dubois-Violette-Rieffel deformation of C(M) with respect to the action of \mathbb{T}^n .
- Let $\mathcal{E} := \Omega^1(M)$ denote the space of one forms of the spectral triple $(C^{\infty}(M), \bigoplus_k L^2(\Omega^k(M), d + d^*)).$
- Then we have the Connes-Landi isospectral deformation of the above spectral triple. Let \mathcal{E}_{θ} be the space of one forms for the isospectral deformation of \mathcal{E} . Then for any bilinear Riemannian metric on \mathcal{E}_{θ} there exists a unique Levi-Civita connection on the bimodule \mathcal{E}_{θ} .
- The Levi-Civita connection ∇ on the bimodule \mathcal{E} deforms to the Levi-Civita connection ∇_{θ} on \mathcal{E}_{θ} .

Proposition

Suppose that there exists a unital subalgebra \mathcal{A}' of $\mathcal{Z}(\mathcal{A})$ and an \mathcal{A}' -submodule \mathcal{E}' of $\mathcal{Z}(\mathcal{E})$ such that \mathcal{E}' is projective and finitely generated over \mathcal{A}' .

If the map

$$u_{\mathcal{E}'}^{\mathcal{E}}: \mathcal{E}' \otimes_{\mathcal{A}'} \mathcal{A} \to \mathcal{E},$$

defined by

$$u_{\mathcal{E}'}^{\mathcal{E}}\left(\sum_{i}e_{i}'\otimes_{\mathcal{A}'}a_{i}\right)=\sum_{i}e_{i}'a_{i}$$

is an isomorphism of vector spaces,

then $u^{\mathcal{E}}: \mathcal{Z}(\mathcal{E}) \otimes_{\mathcal{Z}(\mathcal{A})} \mathcal{A} \to \mathcal{E}$ is an isomorphism.

Moreover, if $\mathcal{Z}(\mathcal{E})$ is a finitely generated projective module over $\mathcal{Z}(\mathcal{A})$, then $u^{\mathcal{E}}$ is an isomorphism if and only if there exists \mathcal{E}' and \mathcal{A}' such that $u^{\mathcal{E}}_{\mathcal{E}'}$ is an isomorphism.

Choice of \mathcal{E}' and \mathcal{A}'

Suppose *M* is a compact Riemannian manifold equipped with a free and isometric action of \mathbb{T}^n . Let $\mathcal{E} = \Omega^1(M)$ and $\mathcal{A} = C^{\infty}(M)$. Take $\mathcal{E}' =$ fixed point submodule (of \mathcal{E}) and $\mathcal{A}' =$ fixed point subalgebra of \mathcal{A} . Then the Proposition holds.

Let $Q : \text{Im}(1 - P_{\text{sym}}) \to \text{Im}(m) \cong \Omega^2(\mathcal{A})$ be the isomorphism from **Assumption II**.

Let $Q : \text{Im}(1 - P_{\text{sym}}) \to \text{Im}(m) \cong \Omega^2(\mathcal{A})$ be the isomorphism from **Assumption II**.

The map $H: \mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$

$$\omega \otimes_{\mathbb{C}} \eta \mapsto (1 - P_{\text{sym}})_{23} (\nabla \omega \otimes_{\mathcal{A}} \eta) + \omega \otimes_{\mathcal{A}} Q^{-1}(d\eta)$$

descends to a map $H : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$.

Let $Q : \text{Im}(1 - P_{\text{sym}}) \to \text{Im}(m) \cong \Omega^2(\mathcal{A})$ be the isomorphism from Assumption II.

The map $H: \mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$

$$\omega \otimes_{\mathbb{C}} \eta \mapsto (1 - P_{\text{sym}})_{23} (\nabla \omega \otimes_{\mathcal{A}} \eta) + \omega \otimes_{\mathcal{A}} Q^{-1}(d\eta)$$

descends to a map $H : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$. Define $R(\nabla) := H \circ \nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$. Then $R(\nabla)$ is a right \mathcal{A} -linear map.

Let $Q : \text{Im}(1 - P_{\text{sym}}) \to \text{Im}(m) \cong \Omega^2(\mathcal{A})$ be the isomorphism from **Assumption II**.

The map $H: \mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$

$$\omega \otimes_{\mathbb{C}} \eta \mapsto (1 - P_{\text{sym}})_{23} (\nabla \omega \otimes_{\mathcal{A}} \eta) + \omega \otimes_{\mathcal{A}} Q^{-1}(d\eta)$$

descends to a map $H : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$. Define $R(\nabla) := H \circ \nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$. Then $R(\nabla)$ is a right \mathcal{A} -linear map.

The curvature operator

$$\Theta := (\sigma_{23} \otimes_{\mathcal{A}} \operatorname{id}_{\mathcal{E}^*}) \zeta_{\mathcal{E}, \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}}^{-1} R(\nabla) \in \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^*.$$

Towards the Ricci curvature

Need a suitable map $\rho : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$.

Jyotishman Bhowmick (Indian Statistical InstituteLevi-Civita connections in noncommutative geome

A D > A A > A > A

Towards the Ricci curvature

Need a suitable map $\rho : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$. Define

$$T^{R}_{\mathcal{E},\mathcal{E}^{*}}:\mathcal{E}^{*}\otimes_{\mathcal{A}}\mathcal{E}\to\mathcal{E}^{*}\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{Z}(\mathcal{E}),$$

$$T^{L}_{\mathcal{E},\mathcal{E}^{*}}:=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}^{*}\to\mathcal{Z}(\mathcal{E})\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{E}^{*},$$

• □ ▶ • • • • • • • • •

Need a suitable map $\rho : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$. Define

$$T^{R}_{\mathcal{E},\mathcal{E}^{*}}:\mathcal{E}^{*}\otimes_{\mathcal{A}}\mathcal{E}\to\mathcal{E}^{*}\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{Z}(\mathcal{E}),$$
$$T^{L}_{\mathcal{E},\mathcal{E}^{*}}:=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}^{*}\to\mathcal{Z}(\mathcal{E})\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{E}^{*},$$

Then $T^{R}_{\mathcal{E},\mathcal{E}^{*}}$ defines a left \mathcal{A} , right $\mathcal{Z}(\mathcal{A})$ -linear isomorphism, $T^{L}_{\mathcal{E},\mathcal{E}^{*}}$ defines a right \mathcal{A} -module isomorphism left $\mathcal{Z}(\mathcal{A})$ -linear isomorphism.

Need a suitable map $\rho : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$. Define

$$T^{R}_{\mathcal{E},\mathcal{E}^{*}}:\mathcal{E}^{*}\otimes_{\mathcal{A}}\mathcal{E}\to\mathcal{E}^{*}\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{Z}(\mathcal{E}),$$
$$T^{L}_{\mathcal{E},\mathcal{E}^{*}}:=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}^{*}\to\mathcal{Z}(\mathcal{E})\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{E}^{*},$$

Then $T^{R}_{\mathcal{E},\mathcal{E}^{*}}$ defines a left \mathcal{A} , right $\mathcal{Z}(\mathcal{A})$ -linear isomorphism, $T^{L}_{\mathcal{E},\mathcal{E}^{*}}$ defines a right \mathcal{A} -module isomorphism left $\mathcal{Z}(\mathcal{A})$ -linear isomorphism. Define:

$$\rho: \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$$
 defined by $\rho:=(T^R_{\mathcal{E},\mathcal{E}^*})^{-1}$ flip $T^L_{\mathcal{E},\mathcal{E}^*}$,

Need a suitable map $\rho : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$. Define

$$T^{R}_{\mathcal{E},\mathcal{E}^{*}}:\mathcal{E}^{*}\otimes_{\mathcal{A}}\mathcal{E}\to\mathcal{E}^{*}\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{Z}(\mathcal{E}),$$
$$T^{L}_{\mathcal{E},\mathcal{E}^{*}}:=\mathcal{E}\otimes_{\mathcal{A}}\mathcal{E}^{*}\to\mathcal{Z}(\mathcal{E})\otimes_{\mathcal{Z}(\mathcal{A})}\mathcal{E}^{*},$$

Then $T^{R}_{\mathcal{E},\mathcal{E}^{*}}$ defines a left \mathcal{A} , right $\mathcal{Z}(\mathcal{A})$ -linear isomorphism, $T^{L}_{\mathcal{E},\mathcal{E}^{*}}$ defines a right \mathcal{A} -module isomorphism left $\mathcal{Z}(\mathcal{A})$ -linear isomorphism. Define:

$$\rho: \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E}$$
 defined by $\rho := (T^R_{\mathcal{E}, \mathcal{E}^*})^{-1}$ flip $T^L_{\mathcal{E}, \mathcal{E}^*}$,

where flip : $\mathcal{Z}(\mathcal{E}) \otimes_{\mathcal{Z}(\mathcal{A})} \mathcal{E}^* \to \mathcal{E}^* \otimes_{\mathcal{Z}(\mathcal{A})} \mathcal{Z}(\mathcal{E})$ is the map given by

flip
$$(e' \otimes_{\mathcal{Z}(\mathcal{A})} \phi) = \phi \otimes_{\mathcal{Z}(\mathcal{A})} e'$$

which is well defined and a right $\mathcal{Z}(\mathcal{A})$ -linear isomorphism.

The Ricci curvature

The Ricci curvature Ric is defined as the element in $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ given by

$$\operatorname{Ric} := (\operatorname{id}_{\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}} \otimes_{\mathcal{A}} \operatorname{ev} \circ \rho)(\Theta), \tag{2}$$

where $ev : \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E} \to \mathcal{A}$ is the $\mathcal{A} - \mathcal{A}$ -bilinear map sending $e^* \otimes_{\mathcal{A}} f$ to $e^*(f)$ for all $e^* \in \mathcal{E}^*$ and $f \in \mathcal{E}$.

The Ricci curvature

The Ricci curvature Ric is defined as the element in $\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ given by

$$\operatorname{Ric} := (\operatorname{id}_{\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}} \otimes_{\mathcal{A}} \operatorname{ev} \circ \rho)(\Theta), \tag{2}$$

where $ev : \mathcal{E}^* \otimes_{\mathcal{A}} \mathcal{E} \to \mathcal{A}$ is the $\mathcal{A} - \mathcal{A}$ -bilinear map sending $e^* \otimes_{\mathcal{A}} f$ to $e^*(f)$ for all $e^* \in \mathcal{E}^*$ and $f \in \mathcal{E}$.

The scalar curvature

The scalar curvature Scal is defined as:

$$\operatorname{Scal} := \operatorname{ev}(V_g \otimes_{\mathcal{A}} \operatorname{id}_{\mathcal{E}})(\operatorname{Ric}) \in \mathcal{A}.$$

Theorem (B. + Goswami + Joardar)

Suppose \mathcal{E} satisfies **Assumption I - III**. If g_0 is a pseudo-Riemannian bilinear metric on \mathcal{E} and k is an invertible element of \mathcal{A} , then the Levi-Civita connection on \mathcal{E} is given by

$$\nabla(\omega) = \nabla_0(\omega) + k^{-1} P_{\text{sym}}(dk \otimes_{\mathcal{A}} \omega) - \frac{1}{2} k^{-1} \Omega_{g_0} g_0(dk \otimes_{\mathcal{A}} \omega),$$

where $\Omega_{g_0} \in \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}$ is defined by

$$\Omega_{g_0} = (\mathrm{id}_{\mathcal{E}} \otimes_{\mathcal{A}} V_{g_0}^{-1}) \zeta_{\mathcal{E},\mathcal{E}}^{-1}(\mathrm{id}_{\mathcal{E}}).$$

Proposition (B. + Goswami + Joardar)

If \mathcal{E} is a free module (satisfying **Assumption I - III**) with a basis $\{e_1, e_2, \cdots e_n\}$ such that

- $\bullet \ e_i \in \mathcal{Z}(\mathcal{E})$
- **2** $d(e_i) = 0$ for all $i = 1, 2, \dots n$,
- Solution There exists a torsionless connection $\nabla_0(e_i) = 0$ for all $i = 1, 2, \dots n$.

Suppose that g_0 is a pseudo-Riemannian bilinear metric on \mathcal{E} such that $g_0(e_i \otimes_{\mathcal{A}} e_j) = \delta_{ij} \mathbf{1}_{\mathcal{A}}.$

Consider the conformally deformed metric $g := kg_0$ where k is an invertible element in A.

Then the Christoffel symbols of the Levi-Civita connection are given by:

$$\Gamma_{jl}^{i} = \frac{1}{2} (\delta_{il} k^{-1} \partial_j(k) + \delta_{ij} k^{-1} \partial_l(k) - \delta_{jl} k^{-1} \partial_i(k)).$$
(3)

Curvature for the conformal perturbation on NC-torus

The module \mathcal{E} is freely generated by the central elements

$$e_1 = 1 \otimes_{\mathbb{C}} \gamma_1, e_2 = 1 \otimes_{\mathbb{C}} \gamma_2, d(e_1) = d(e_2) = 0.$$

The space of two forms is a rank one free module generated by $e_1 \cdot e_2$.

Curvature for the conformal perturbation on NC-torus

The module \mathcal{E} is freely generated by the central elements

$$e_1 = 1 \otimes_{\mathbb{C}} \gamma_1, \ e_2 = 1 \otimes_{\mathbb{C}} \gamma_2, d(e_1) = d(e_2) = 0.$$

The space of two forms is a rank one free module generated by $e_1 \cdot e_2$.

Proposition (B. + Goswami + Joardar)

Let g_0 be the metric on \mathcal{E} defined by $g_0(\omega \otimes_{\mathcal{A}} \eta) = (\tau \otimes_{\mathbb{C}} \operatorname{Tr}_{M_2(\mathbb{C})})(\omega \eta)$. Let *k* be an invertible element of \mathcal{A} .

$$\begin{aligned} \operatorname{Ric}(e_{1}, e_{1}) &= \operatorname{Ric}(e_{2}, e_{2}) = \\ &- \frac{1}{2}(k^{-1}(\partial_{1}^{2} + \partial_{2}^{2})(k) + \partial_{1}(k^{-1})\partial_{1}(k) + \partial_{2}(k^{-1})\partial_{2}(k)). \end{aligned}$$
$$\begin{aligned} \operatorname{Ric}(e_{1}, e_{2}) &= -\operatorname{Ric}(e_{2}, e_{1}) = \frac{1}{2}(\partial_{1}(k^{-1})\partial_{2}(k) - \partial_{2}(k^{-1})\partial_{1}(k)). \end{aligned}$$
$$\begin{aligned} \operatorname{Scal} &= -(\partial_{1}^{2} + \partial_{2}^{2})(k) - k(\partial_{2}(k^{-1})\partial_{2}(k) - k\partial_{1}(k^{-1})\partial_{1}(k)). \end{aligned}$$

Suppose A is an algebra over \mathbb{C} . A differential calculus on A is a pair $(\Omega(A), d)$ such that:

Suppose A is an algebra over \mathbb{C} . A differential calculus on A is a pair $(\Omega(A), d)$ such that:

- $\Omega(\mathcal{A})$ is an $\mathcal{A} \mathcal{A}$ -bimodule,
- [●] Ω(A) = ⊕_{i≥0}Ωⁱ(A), where Ω⁰(A) = A and Ωⁱ(A) are A − A-bimodules.
- We have a bimodule map $m : \Omega(\mathcal{A}) \otimes_{\mathcal{A}} \Omega(\mathcal{A}) \to \Omega(\mathcal{A})$ such that $m(\Omega^{i}(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^{j}(\mathcal{A})) \subseteq \Omega^{i+j}(\mathcal{A}),$
- We have a map $d : \Omega^i(\mathcal{A}) \to \Omega^{i+1}(\mathcal{A})$ such that $d^2 = 0$ and $d(\omega.\eta) = d\omega.\eta + (-1)^{\deg(\omega)}\omega.d\eta$,
- So $\Omega^i(\mathcal{A})$ is spanned by elements of the form $da_0 da_1 \cdots da_i a_{i+1}$.

The spectral triple on the NC-torus

We recall that the noncommutative 2-torus $C(\mathbb{T}^2_{\theta})$ is the universal C^* algebra generated by two unitaries U and V satisfying $UV = e^{2\pi i\theta}VU$ where θ is a number in [0, 1]. The *- subalgebra $\mathcal{A}(\mathbb{T}^2_{\theta})$ of $C(\mathbb{T}^2_{\theta})$ generated by U and Vwill be denoted by \mathcal{A} .

We have the following concrete description of the spectral geometry of A: there are two derivations d_1 and d_2 on A obtained by extending linearly the rule:

$$d_1(U) = U, \ d_1(V) = 0, \ d_2(U) = 0, \ d_2(V) = V.$$

There is a faithful trace on \mathcal{A} defined as follows:

 $\tau(\sum_{m,n} a_{mn} U^m V^n) = a_{00}, \text{ where the sum runs over a finite subset of } \mathbb{Z} \times \mathbb{Z}.$ Let $\mathcal{H} = L^2(C(\mathbb{T}^2_{\theta}), \tau) \oplus L^2(C(\mathbb{T}^2_{\theta}), \tau) \text{ where } L^2(C(\mathbb{T}^2_{\theta}), \tau) \text{ denotes the GNS}$ Hilbert space of \mathcal{A} with respect to the state τ . We note that \mathcal{A} is embedded as a subalgebra of $\mathcal{B}(\mathcal{H})$ by $a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. The Dirac operator on \mathcal{H} is defined

by
$$D = \begin{pmatrix} 0 & d_1 + \sqrt{-1}d_2 \\ d_1 - \sqrt{-1}d_2 & 0 \end{pmatrix}$$
. Let $\gamma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & \sqrt{-1} \\ 0 & \sqrt{-1} \end{pmatrix}$

Set up

- A strongly continuous action α by automorphisms on a unital C^* algebra A.
- 2 Let A^{∞} denote the dense *-subalgebra of smooth vectors in *A*.
- Solution Fix an $n \times n$ skew symmetric matrix J.

The deformation

The deformation A_J^{∞} of A^{∞} is given by the oscillatory integral

$$a \times_J b = \int \int \alpha_{Ju}(a) \alpha_v(b) e(u.v) du dv.$$

 A_J^{∞} can be completed to a unital C^* algebra A_J called the Rieffel deformation of A.